32.6.35 problem Exercise 12.35, page 103

Internal problem ID [5900]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number : Exercise 12.35, page 103
Date solved : Monday, January 27, 2025 at 01:25:21 PM
CAS classification : [_separable]

\begin{align*} \left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right )&=0 \end{align*}

Solution by Maple

Time used: 0.569 (sec). Leaf size: 13

dsolve((x^2-1)*diff(y(x),x)-2*x*y(x)*ln(y(x))=0,y(x), singsol=all)
 
\[ y \left (x \right ) = {\mathrm e}^{c_{1} \left (x +1\right ) \left (x -1\right )} \]

Solution by Mathematica

Time used: 0.251 (sec). Leaf size: 22

DSolve[(x^2-1)*D[y[x],x]-2*x*y[x]*Log[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to e^{e^{c_1} \left (x^2-1\right )} \\ y(x)\to 1 \\ \end{align*}