29.32.8 problem 942

Internal problem ID [5520]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 32
Problem number : 942
Date solved : Tuesday, March 04, 2025 at 09:51:02 PM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} y {y^{\prime }}^{2}&=a^{2} x \end{align*}

Maple. Time used: 0.063 (sec). Leaf size: 78
ode:=y(x)*diff(y(x),x)^2 = x*a^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} x \left (1-\frac {c_{1}}{\left (-\frac {a^{2} \left (-a x \sqrt {x y \left (x \right )}+y \left (x \right )^{2}\right )}{y \left (x \right )^{2}}\right )^{{2}/{3}} y \left (x \right )}\right ) &= 0 \\ x \left (1-\frac {c_{1}}{\left (-\frac {a^{2} \left (a x \sqrt {x y \left (x \right )}+y \left (x \right )^{2}\right )}{y \left (x \right )^{2}}\right )^{{2}/{3}} y \left (x \right )}\right ) &= 0 \\ \end{align*}
Mathematica. Time used: 3.878 (sec). Leaf size: 46
ode=y[x] (D[y[x],x])^2==a^2 x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \left (-a x^{3/2}+\frac {3 c_1}{2}\right ){}^{2/3} \\ y(x)\to \left (a x^{3/2}+\frac {3 c_1}{2}\right ){}^{2/3} \\ \end{align*}
Sympy. Time used: 47.890 (sec). Leaf size: 415
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a**2*x + y(x)*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} - 2 C_{1} a \sqrt {x^{3}} + a^{2} x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} - 2 C_{1} a \sqrt {x^{3}} + a^{2} x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} + 2 C_{1} a \sqrt {x^{3}} + a^{2} x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} + 2 C_{1} a \sqrt {x^{3}} + a^{2} x^{3}}}{2}, \ y{\left (x \right )} = \sqrt [3]{C_{1}^{2} - 2 C_{1} a \sqrt {x^{3}} + a^{2} x^{3}}, \ y{\left (x \right )} = \sqrt [3]{C_{1}^{2} + 2 C_{1} a \sqrt {x^{3}} + a^{2} x^{3}}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} - 2 C_{1} a \sqrt {x^{3}} + a^{2} x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} - 2 C_{1} a \sqrt {x^{3}} + a^{2} x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} + 2 C_{1} a \sqrt {x^{3}} + a^{2} x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} + 2 C_{1} a \sqrt {x^{3}} + a^{2} x^{3}}}{2}, \ y{\left (x \right )} = \sqrt [3]{C_{1}^{2} - 2 C_{1} a \sqrt {x^{3}} + a^{2} x^{3}}, \ y{\left (x \right )} = \sqrt [3]{C_{1}^{2} + 2 C_{1} a \sqrt {x^{3}} + a^{2} x^{3}}\right ] \]