32.6.37 problem Exercise 12.37, page 103

Internal problem ID [5902]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number : Exercise 12.37, page 103
Date solved : Monday, January 27, 2025 at 01:25:25 PM
CAS classification : [_linear]

\begin{align*} \cos \left (x \right ) y^{\prime }+y+\left (1+\sin \left (x \right )\right ) \cos \left (x \right )&=0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 29

dsolve(diff(y(x),x)*cos(x)+y(x)+(1+sin(x))*cos(x)=0,y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {-2 \ln \left (\sec \left (x \right )+\tan \left (x \right )\right )+2 \ln \left (\cos \left (x \right )\right )+\sin \left (x \right )+c_{1}}{\sec \left (x \right )+\tan \left (x \right )} \]

Solution by Mathematica

Time used: 0.573 (sec). Leaf size: 40

DSolve[D[y[x],x]*Cos[x]+y[x]+(1+Sin[x])*Cos[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{-2 \text {arctanh}\left (\tan \left (\frac {x}{2}\right )\right )} \left (\sin (x)+4 \log \left (\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )\right )+c_1\right ) \]