29.32.16 problem 950

Internal problem ID [5528]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 32
Problem number : 950
Date solved : Tuesday, March 04, 2025 at 09:51:20 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.076 (sec). Leaf size: 176
ode:=y(x)*diff(y(x),x)^2-(x+y(x))*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= x \\ y \left (x \right ) &= 0 \\ \frac {-x \sqrt {\frac {\left (3 y \left (x \right )+x \right ) \left (x -y \left (x \right )\right )}{x^{2}}}+2 y \left (x \right ) \ln \left (\frac {y \left (x \right )}{x}\right )+\left (-2 \,\operatorname {arctanh}\left (\frac {x +y \left (x \right )}{x \sqrt {\frac {\left (3 y \left (x \right )+x \right ) \left (x -y \left (x \right )\right )}{x^{2}}}}\right )-2 c_{1} +2 \ln \left (x \right )\right ) y \left (x \right )-x}{2 y \left (x \right )} &= 0 \\ \frac {x \sqrt {\frac {\left (3 y \left (x \right )+x \right ) \left (x -y \left (x \right )\right )}{x^{2}}}+2 y \left (x \right ) \ln \left (\frac {y \left (x \right )}{x}\right )+\left (2 \,\operatorname {arctanh}\left (\frac {x +y \left (x \right )}{x \sqrt {\frac {\left (3 y \left (x \right )+x \right ) \left (x -y \left (x \right )\right )}{x^{2}}}}\right )-2 c_{1} +2 \ln \left (x \right )\right ) y \left (x \right )-x}{2 y \left (x \right )} &= 0 \\ \end{align*}
Mathematica. Time used: 2.348 (sec). Leaf size: 192
ode=y[x] (D[y[x],x])^2-(x+y[x])D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\log \left (\sqrt {\frac {y(x)}{x}-1}+i \sqrt {\frac {3 y(x)}{x}+1}\right )-\frac {i \sqrt {\frac {3 y(x)}{x}+1}}{\sqrt {\frac {y(x)}{x}-1}+i \sqrt {\frac {3 y(x)}{x}+1}}&=-\frac {\log (x)}{2}+c_1,y(x)\right ] \\ \text {Solve}\left [\log \left (\sqrt {\frac {y(x)}{x}-1}-i \sqrt {\frac {3 y(x)}{x}+1}\right )-\frac {\sqrt {\frac {3 y(x)}{x}+1}}{\sqrt {\frac {3 y(x)}{x}+1}+i \sqrt {\frac {y(x)}{x}-1}}&=-\frac {\log (x)}{2}+c_1,y(x)\right ] \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 45.006 (sec). Leaf size: 196
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-x - y(x))*Derivative(y(x), x) + y(x)*Derivative(y(x), x)**2 + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} e^{- \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {u_{1}}{u_{1}^{2} - u_{1} \sqrt {u_{1}^{2} + 2 u_{1} - 3} + u_{1} - 2}\, du_{1} + \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {\sqrt {u_{1}^{2} + 2 u_{1} - 3}}{u_{1}^{2} - u_{1} \sqrt {u_{1}^{2} + 2 u_{1} - 3} + u_{1} - 2}\, du_{1} - \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {1}{u_{1}^{2} - u_{1} \sqrt {u_{1}^{2} + 2 u_{1} - 3} + u_{1} - 2}\, du_{1}}, \ y{\left (x \right )} = C_{1} e^{- \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {u_{1}}{u_{1}^{2} + u_{1} \sqrt {u_{1}^{2} + 2 u_{1} - 3} + u_{1} - 2}\, du_{1} - \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {\sqrt {u_{1}^{2} + 2 u_{1} - 3}}{u_{1}^{2} + u_{1} \sqrt {u_{1}^{2} + 2 u_{1} - 3} + u_{1} - 2}\, du_{1} - \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {1}{u_{1}^{2} + u_{1} \sqrt {u_{1}^{2} + 2 u_{1} - 3} + u_{1} - 2}\, du_{1}}\right ] \]