Internal
problem
ID
[5910]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
12,
Miscellaneous
Methods
Problem
number
:
Exercise
12.45,
page
103
Date
solved
:
Monday, January 27, 2025 at 01:26:53 PM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
\begin{align*} \left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (y+2 x \right )&=0 \end{align*}
Time used: 0.067 (sec). Leaf size: 317
\begin{align*}
y \left (x \right ) &= -\frac {2 \left (c_{1} x^{2}-\frac {\left (4-16 x^{3} c_{1}^{{3}/{2}}+4 \sqrt {20 x^{6} c_{1}^{3}-8 x^{3} c_{1}^{{3}/{2}}+1}\right )^{{2}/{3}}}{4}\right )}{\sqrt {c_{1}}\, \left (4-16 x^{3} c_{1}^{{3}/{2}}+4 \sqrt {20 x^{6} c_{1}^{3}-8 x^{3} c_{1}^{{3}/{2}}+1}\right )^{{1}/{3}}} \\
y \left (x \right ) &= -\frac {\left (1+i \sqrt {3}\right ) \left (4-16 x^{3} c_{1}^{{3}/{2}}+4 \sqrt {20 x^{6} c_{1}^{3}-8 x^{3} c_{1}^{{3}/{2}}+1}\right )^{{1}/{3}}}{4 \sqrt {c_{1}}}-\frac {x^{2} \sqrt {c_{1}}\, \left (i \sqrt {3}-1\right )}{\left (4-16 x^{3} c_{1}^{{3}/{2}}+4 \sqrt {20 x^{6} c_{1}^{3}-8 x^{3} c_{1}^{{3}/{2}}+1}\right )^{{1}/{3}}} \\
y \left (x \right ) &= \frac {4 i \sqrt {3}\, c_{1} x^{2}+i \left (4-16 x^{3} c_{1}^{{3}/{2}}+4 \sqrt {20 x^{6} c_{1}^{3}-8 x^{3} c_{1}^{{3}/{2}}+1}\right )^{{2}/{3}} \sqrt {3}+4 c_{1} x^{2}-\left (4-16 x^{3} c_{1}^{{3}/{2}}+4 \sqrt {20 x^{6} c_{1}^{3}-8 x^{3} c_{1}^{{3}/{2}}+1}\right )^{{2}/{3}}}{4 \left (4-16 x^{3} c_{1}^{{3}/{2}}+4 \sqrt {20 x^{6} c_{1}^{3}-8 x^{3} c_{1}^{{3}/{2}}+1}\right )^{{1}/{3}} \sqrt {c_{1}}} \\
\end{align*}
Time used: 46.009 (sec). Leaf size: 576
\begin{align*}
y(x)\to \frac {\sqrt [3]{-4 x^3+\sqrt {20 x^6-8 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{\sqrt [3]{2}}-\frac {\sqrt [3]{2} x^2}{\sqrt [3]{-4 x^3+\sqrt {20 x^6-8 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}} \\
y(x)\to \frac {\sqrt [3]{2} \left (2+2 i \sqrt {3}\right ) x^2+i 2^{2/3} \left (\sqrt {3}+i\right ) \left (-4 x^3+\sqrt {20 x^6-8 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}\right ){}^{2/3}}{4 \sqrt [3]{-4 x^3+\sqrt {20 x^6-8 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}} \\
y(x)\to \frac {\left (1-i \sqrt {3}\right ) x^2}{2^{2/3} \sqrt [3]{-4 x^3+\sqrt {20 x^6-8 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-4 x^3+\sqrt {20 x^6-8 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{2 \sqrt [3]{2}} \\
y(x)\to \sqrt [3]{\sqrt {5} \sqrt {x^6}-2 x^3}-\frac {x^2}{\sqrt [3]{\sqrt {5} \sqrt {x^6}-2 x^3}} \\
y(x)\to \frac {\sqrt [3]{-1} \left (x^2+\sqrt [3]{-1} \left (\sqrt {5} \sqrt {x^6}-2 x^3\right )^{2/3}\right )}{\sqrt [3]{\sqrt {5} \sqrt {x^6}-2 x^3}} \\
y(x)\to \frac {\left (1-i \sqrt {3}\right ) x^2+\left (-1-i \sqrt {3}\right ) \left (\sqrt {5} \sqrt {x^6}-2 x^3\right )^{2/3}}{2 \sqrt [3]{\sqrt {5} \sqrt {x^6}-2 x^3}} \\
\end{align*}