Internal
problem
ID
[5912]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
12,
Miscellaneous
Methods
Problem
number
:
Exercise
12.47,
page
103
Date
solved
:
Monday, January 27, 2025 at 01:27:01 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
Time used: 1.361 (sec). Leaf size: 641
\begin{align*}
y \left (x \right ) &= -\frac {\sqrt {2}\, \sqrt {\frac {c_{1}^{2} x^{4}-c_{1} x^{2} \left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}+\left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{2}/{3}}}{\left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}}}}{2 \sqrt {c_{1}}} \\
y \left (x \right ) &= \frac {\sqrt {2}\, \sqrt {\frac {c_{1}^{2} x^{4}-c_{1} x^{2} \left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}+\left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{2}/{3}}}{\left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}}}}{2 \sqrt {c_{1}}} \\
y \left (x \right ) &= -\frac {\sqrt {\frac {\left (c_{1} x^{2}+\left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}\right ) \left (\left (-1-i \sqrt {3}\right ) \left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}+\left (i \sqrt {3}-1\right ) x^{2} c_{1} \right )}{\left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}}}}{2 \sqrt {c_{1}}} \\
y \left (x \right ) &= \frac {\sqrt {\frac {\left (c_{1} x^{2}+\left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}\right ) \left (\left (-1-i \sqrt {3}\right ) \left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}+\left (i \sqrt {3}-1\right ) x^{2} c_{1} \right )}{\left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}}}}{2 \sqrt {c_{1}}} \\
y \left (x \right ) &= -\frac {\sqrt {\frac {\left (\left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{1}/{3}} \left (i \sqrt {3}-1\right )+\left (-1-i \sqrt {3}\right ) x^{2} c_{1} \right ) \left (c_{1} x^{2}+\left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}\right )}{\left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}}}}{2 \sqrt {c_{1}}} \\
y \left (x \right ) &= \frac {\sqrt {\frac {\left (\left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{1}/{3}} \left (i \sqrt {3}-1\right )+\left (-1-i \sqrt {3}\right ) x^{2} c_{1} \right ) \left (c_{1} x^{2}+\left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}\right )}{\left (2+x^{6} c_{1}^{3}+2 \sqrt {x^{6} c_{1}^{3}+1}\right )^{{1}/{3}}}}}{2 \sqrt {c_{1}}} \\
\end{align*}
Time used: 60.145 (sec). Leaf size: 714
\begin{align*}
y(x)\to -\frac {\sqrt {\sqrt [3]{x^6+2 \sqrt {e^{24 c_1}-e^{12 c_1} x^6}-2 e^{12 c_1}}-x^2+\frac {x^4}{\sqrt [3]{x^6+2 \sqrt {e^{24 c_1}-e^{12 c_1} x^6}-2 e^{12 c_1}}}}}{\sqrt {2}} \\
y(x)\to \frac {\sqrt {\sqrt [3]{x^6+2 \sqrt {e^{24 c_1}-e^{12 c_1} x^6}-2 e^{12 c_1}}-x^2+\frac {x^4}{\sqrt [3]{x^6+2 \sqrt {e^{24 c_1}-e^{12 c_1} x^6}-2 e^{12 c_1}}}}}{\sqrt {2}} \\
y(x)\to -\frac {1}{2} \sqrt {\left (-1-i \sqrt {3}\right ) \sqrt [3]{x^6+2 \sqrt {e^{24 c_1}-e^{12 c_1} x^6}-2 e^{12 c_1}}-2 x^2+\frac {i \left (\sqrt {3}+i\right ) x^4}{\sqrt [3]{x^6+2 \sqrt {e^{24 c_1}-e^{12 c_1} x^6}-2 e^{12 c_1}}}} \\
y(x)\to \frac {1}{2} \sqrt {\left (-1-i \sqrt {3}\right ) \sqrt [3]{x^6+2 \sqrt {e^{24 c_1}-e^{12 c_1} x^6}-2 e^{12 c_1}}-2 x^2+\frac {i \left (\sqrt {3}+i\right ) x^4}{\sqrt [3]{x^6+2 \sqrt {e^{24 c_1}-e^{12 c_1} x^6}-2 e^{12 c_1}}}} \\
y(x)\to -\frac {1}{2} \sqrt {i \left (\sqrt {3}+i\right ) \sqrt [3]{x^6+2 \sqrt {e^{24 c_1}-e^{12 c_1} x^6}-2 e^{12 c_1}}-2 x^2+\frac {\left (-1-i \sqrt {3}\right ) x^4}{\sqrt [3]{x^6+2 \sqrt {e^{24 c_1}-e^{12 c_1} x^6}-2 e^{12 c_1}}}} \\
y(x)\to \frac {1}{2} \sqrt {i \left (\sqrt {3}+i\right ) \sqrt [3]{x^6+2 \sqrt {e^{24 c_1}-e^{12 c_1} x^6}-2 e^{12 c_1}}-2 x^2+\frac {\left (-1-i \sqrt {3}\right ) x^4}{\sqrt [3]{x^6+2 \sqrt {e^{24 c_1}-e^{12 c_1} x^6}-2 e^{12 c_1}}}} \\
\end{align*}