29.32.22 problem 956

Internal problem ID [5534]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 32
Problem number : 956
Date solved : Tuesday, March 04, 2025 at 09:51:29 PM
CAS classification : [[_homogeneous, `class C`], _rational, _dAlembert]

\begin{align*} 2 y {y^{\prime }}^{2}+\left (5-4 x \right ) y^{\prime }+2 y&=0 \end{align*}

Maple. Time used: 0.130 (sec). Leaf size: 119
ode:=2*y(x)*diff(y(x),x)^2+(5-4*x)*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= x -\frac {5}{4} \\ y \left (x \right ) &= -x +\frac {5}{4} \\ y \left (x \right ) &= 0 \\ y \left (x \right ) &= \frac {\sqrt {4 c_{1} +2 \sqrt {-c_{1} \left (-5+4 x \right )^{2}}}}{2} \\ y \left (x \right ) &= -\frac {\sqrt {4 c_{1} +2 \sqrt {-c_{1} \left (-5+4 x \right )^{2}}}}{2} \\ y \left (x \right ) &= \frac {\sqrt {4 c_{1} -2 \sqrt {-c_{1} \left (-5+4 x \right )^{2}}}}{2} \\ y \left (x \right ) &= -\frac {\sqrt {4 c_{1} -2 \sqrt {-c_{1} \left (-5+4 x \right )^{2}}}}{2} \\ \end{align*}
Mathematica. Time used: 0.672 (sec). Leaf size: 160
ode=(2 y[x] (D[y[x],x])^2)+(5-4 x)D[y[x],x]+2 y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -i \sqrt {2} e^{\frac {c_1}{2}} \sqrt {4 x-5+8 e^{c_1}} \\ y(x)\to i \sqrt {2} e^{\frac {c_1}{2}} \sqrt {4 x-5+8 e^{c_1}} \\ y(x)\to -\frac {1}{4} i e^{\frac {c_1}{2}} \sqrt {8 x-10+e^{c_1}} \\ y(x)\to \frac {1}{4} i e^{\frac {c_1}{2}} \sqrt {8 x-10+e^{c_1}} \\ y(x)\to 0 \\ y(x)\to \frac {5}{4}-x \\ y(x)\to x-\frac {5}{4} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((5 - 4*x)*Derivative(y(x), x) + 2*y(x)*Derivative(y(x), x)**2 + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out