32.7.15 problem Exercise 20.16, page 220

Internal problem ID [5930]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number : Exercise 20.16, page 220
Date solved : Monday, January 27, 2025 at 01:27:40 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y&=0 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 19

dsolve(diff(y(x),x$3)-6*diff(y(x),x$2)+12*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)
 
\[ y \left (x \right ) = {\mathrm e}^{2 x} \left (c_3 \,x^{2}+c_{2} x +c_{1} \right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 23

DSolve[D[y[x],{x,3}]-6*D[y[x],{x,2}]+12*D[y[x],x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{2 x} (x (c_3 x+c_2)+c_1) \]