32.8.1 problem Exercise 21.3, page 231

Internal problem ID [5950]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients
Problem number : Exercise 21.3, page 231
Date solved : Monday, January 27, 2025 at 01:28:09 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=4 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 19

dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=4,y(x), singsol=all)
 
\[ y \left (x \right ) = -{\mathrm e}^{-2 x} c_{1} +c_{2} {\mathrm e}^{-x}+2 \]

Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 23

DSolve[D[y[x],{x,2}]+3*D[y[x],x]+2*y[x]==4,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 e^{-2 x}+c_2 e^{-x}+2 \]