32.8.7 problem Exercise 21.9, page 231

Internal problem ID [5956]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients
Problem number : Exercise 21.9, page 231
Date solved : Monday, January 27, 2025 at 01:28:20 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=x^{2} \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 37

dsolve(diff(y(x),x$2)+diff(y(x),x)+y(x)=x^2,y(x), singsol=all)
 
\[ y \left (x \right ) = {\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) c_{2} +{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) c_{1} +x^{2}-2 x \]

Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 54

DSolve[D[y[x],{x,2}]+D[y[x],x]+y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{-x/2} \left (e^{x/2} (x-2) x+c_2 \cos \left (\frac {\sqrt {3} x}{2}\right )+c_1 \sin \left (\frac {\sqrt {3} x}{2}\right )\right ) \]