32.9.11 problem Exercise 22.11, page 240

Internal problem ID [5985]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number : Exercise 22.11, page 240
Date solved : Monday, January 27, 2025 at 01:30:10 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right )^{2} \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 23

dsolve(diff(y(x),x$2)+y(x)=tan(x)^2,y(x), singsol=all)
 
\[ y \left (x \right ) = c_{2} \sin \left (x \right )+\cos \left (x \right ) c_{1} -2+\ln \left (\sec \left (x \right )+\tan \left (x \right )\right ) \sin \left (x \right ) \]

Solution by Mathematica

Time used: 0.106 (sec). Leaf size: 23

DSolve[D[y[x],{x,2}]+y[x]==Tan[x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \sin (x) \text {arctanh}(\sin (x))+c_1 \cos (x)+c_2 \sin (x)-2 \]