32.10.18 problem Exercise 35.18, page 504

Internal problem ID [6012]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number : Exercise 35.18, page 504
Date solved : Monday, January 27, 2025 at 01:32:12 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y^{\prime \prime }&=2 y^{\prime } y \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=2 \end{align*}

Solution by Maple

Time used: 0.171 (sec). Leaf size: 10

dsolve([diff(y(x),x$2)=2*y(x)*diff(y(x),x),y(0) = 1, D(y)(0) = 2],y(x), singsol=all)
 
\[ y = \tan \left (x +\frac {\pi }{4}\right ) \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[{D[y[x],{x,2}]==2*y[x]*D[y[x],x],{y[0]==1,Derivative[1][y][0] ==2}},y[x],x,IncludeSingularSolutions -> True]
 

{}