29.36.5 problem 1068

Internal problem ID [5632]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 36
Problem number : 1068
Date solved : Tuesday, March 04, 2025 at 10:56:54 PM
CAS classification : [[_homogeneous, `class G`]]

\begin{align*} 2 x^{3} {y^{\prime }}^{3}+6 x^{2} y {y^{\prime }}^{2}-\left (1-6 x y\right ) y y^{\prime }+2 y^{3}&=0 \end{align*}

Maple. Time used: 3.974 (sec). Leaf size: 2024
ode:=2*x^3*diff(y(x),x)^3+6*x^2*y(x)*diff(y(x),x)^2-(1-6*x*y(x))*y(x)*diff(y(x),x)+2*y(x)^3 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= 0 \\ \text {Expression too large to display} \\ \text {Expression too large to display} \\ \text {Expression too large to display} \\ \end{align*}
Mathematica. Time used: 62.874 (sec). Leaf size: 179
ode=2 x^3 (D[y[x],x])^3 +6 x^2 y[x] (D[y[x],x])^2 -(1-6 x y[x])y[x] D[y[x],x]+2 y[x]^3==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\int _1^x\frac {\text {InverseFunction}\left [-\frac {2 \sqrt {\text {$\#$1}^2-8 \text {$\#$1}^3} \arctan \left (\sqrt {8 \text {$\#$1}-1}\right )}{\text {$\#$1} \sqrt {8 \text {$\#$1}-1}}-14 \log \left (\text {$\#$1}^2 (8 \text {$\#$1}-1)\right )+\log \left (\text {$\#$1}^{14} (8 \text {$\#$1}-1)^{15/2} \left (\text {$\#$1}-\sqrt {\text {$\#$1}^2-8 \text {$\#$1}^3}\right )\right )+\log \left (\text {$\#$1}^{12} (8 \text {$\#$1}-1)^{13/2} \left (\text {$\#$1}+\sqrt {\text {$\#$1}^2-8 \text {$\#$1}^3}\right )\right )+\frac {3 \sqrt {\text {$\#$1}^2-8 \text {$\#$1}^3}}{\text {$\#$1}}\&\right ][c_1+2 \log (K[1])]}{K[1]}dK[1]}{x} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**3*Derivative(y(x), x)**3 + 6*x**2*y(x)*Derivative(y(x), x)**2 - (-6*x*y(x) + 1)*y(x)*Derivative(y(x), x) + 2*y(x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out