29.36.30 problem 1101

Internal problem ID [5657]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 36
Problem number : 1101
Date solved : Friday, March 14, 2025 at 01:31:04 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} {y^{\prime }}^{6}+f \left (x \right ) \left (y-a \right )^{5} \left (y-b \right )^{3}&=0 \end{align*}

Maple. Time used: 0.155 (sec). Leaf size: 69
ode:=diff(y(x),x)^6+f(x)*(y(x)-a)^5*(y(x)-b)^3 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \int _{}^{y \left (x \right )}\frac {1}{\left (\textit {\_a} -a \right )^{{5}/{6}} \sqrt {\textit {\_a} -b}}d \textit {\_a} -\frac {\int _{}^{x}\left (-f \left (\textit {\_a} \right ) \left (y \left (x \right )-b \right )^{3} \left (y \left (x \right )-a \right )^{5}\right )^{{1}/{6}}d \textit {\_a}}{\left (y \left (x \right )-a \right )^{{5}/{6}} \sqrt {y \left (x \right )-b}}+c_{1} = 0 \]
Mathematica. Time used: 2.135 (sec). Leaf size: 567
ode=(D[y[x],x])^6 +f[x] (y[x]-a)^5 (y[x]-b)^3==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy. Time used: 51.543 (sec). Leaf size: 377
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
f = Function("f") 
ode = Eq((-a + y(x))**5*(-b + y(x))**3*f(x) + Derivative(y(x), x)**6,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \text {Solution too large to show} \]