34.3.15 problem 18

Internal problem ID [6054]
Book : A treatise on ordinary and partial differential equations by William Woolsey Johnson. 1913
Section : Chapter VII, Solutions in series. Examples XIV. page 177
Problem number : 18
Date solved : Monday, January 27, 2025 at 01:34:32 PM
CAS classification : [_Gegenbauer, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+a^{2} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 65

Order:=6; 
dsolve((1-x^2)*diff(y(x),x$2)-x*diff(y(x),x)+a^2*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {a^{2} x^{2}}{2}+\frac {a^{2} \left (a^{2}-4\right ) x^{4}}{24}\right ) y \left (0\right )+\left (x -\frac {\left (a^{2}-1\right ) x^{3}}{6}+\frac {\left (a^{4}-10 a^{2}+9\right ) x^{5}}{120}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 88

AsymptoticDSolveValue[(1-x^2)*D[y[x],{x,2}]-x*D[y[x],x]+a^2*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {a^4 x^5}{120}-\frac {a^2 x^5}{12}-\frac {a^2 x^3}{6}+\frac {3 x^5}{40}+\frac {x^3}{6}+x\right )+c_1 \left (\frac {a^4 x^4}{24}-\frac {a^2 x^4}{6}-\frac {a^2 x^2}{2}+1\right ) \]