29.37.26 problem 1148

Internal problem ID [5684]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 37
Problem number : 1148
Date solved : Tuesday, March 04, 2025 at 11:22:41 PM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} a \left (\ln \left (y^{\prime }\right )-y^{\prime }\right )-x +y&=0 \end{align*}

Maple. Time used: 0.024 (sec). Leaf size: 38
ode:=a*(ln(diff(y(x),x))-diff(y(x),x))-x+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= x +a \\ y \left (x \right ) &= -a \ln \left ({\mathrm e}^{\frac {-c_{1} +x}{a}}\right )+a \,{\mathrm e}^{\frac {-c_{1} +x}{a}}+x \\ \end{align*}
Mathematica. Time used: 0.373 (sec). Leaf size: 22
ode=a*(Log[D[y[x],x]]-D[y[x],x])-x+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to a e^{\frac {x-c_1}{a}}+c_1 \]
Sympy. Time used: 1.455 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*(log(Derivative(y(x), x)) - Derivative(y(x), x)) - x + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ C_{1} + a W\left (- e^{\frac {x - y{\left (x \right )}}{a}}\right ) + y{\left (x \right )} = 0 \]