31.1.4 problem 1.4

Internal problem ID [5702]
Book : Differential Equations, By George Boole F.R.S. 1865
Section : Chapter 2
Problem number : 1.4
Date solved : Tuesday, March 04, 2025 at 11:28:11 PM
CAS classification : [_separable]

\begin{align*} 1+y^{2}-\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime }&=0 \end{align*}

Maple. Time used: 0.223 (sec). Leaf size: 28
ode:=1+y(x)^2-(y(x)+(1+y(x)^2)^(1/2))*(x^2+1)^(3/2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {x}{\sqrt {x^{2}+1}}-\operatorname {arcsinh}\left (y \left (x \right )\right )-\frac {\ln \left (y \left (x \right )^{2}+1\right )}{2}+c_{1} = 0 \]
Mathematica. Time used: 15.203 (sec). Leaf size: 115
ode=(1+y[x]^2)-(y[x]+Sqrt[1+y[x]^2])*(1+x^2)^(3/2)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {i \left (1+e^{\frac {x}{\sqrt {x^2+1}}+c_1}\right )}{\sqrt {1+2 e^{\frac {x}{\sqrt {x^2+1}}+c_1}}} \\ y(x)\to \frac {i \left (1+e^{\frac {x}{\sqrt {x^2+1}}+c_1}\right )}{\sqrt {1+2 e^{\frac {x}{\sqrt {x^2+1}}+c_1}}} \\ y(x)\to -i \\ y(x)\to i \\ \end{align*}
Sympy. Time used: 1.308 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-(x**2 + 1)**(3/2)*(sqrt(y(x)**2 + 1) + y(x))*Derivative(y(x), x) + y(x)**2 + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ - \frac {x}{\sqrt {x^{2} + 1}} + \frac {\log {\left (y^{2}{\left (x \right )} + 1 \right )}}{2} + \operatorname {asinh}{\left (y{\left (x \right )} \right )} = C_{1} \]