Internal
problem
ID
[5729]
Book
:
Differential
Equations,
By
George
Boole
F.R.S.
1865
Section
:
Chapter
3
Problem
number
:
8.1
Date
solved
:
Tuesday, March 04, 2025 at 11:30:35 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _exact]
ode:=x/(1+x^2+y(x)^2)^(1/2)+y(x)/(1+x^2+y(x)^2)^(1/2)*diff(y(x),x)+y(x)/(x^2+y(x)^2)-x/(x^2+y(x)^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode= x/Sqrt[1+x^2+y[x]^2] + y[x]/Sqrt[1+x^2+y[x]^2]*D[y[x],x]+y[x]/(x^2+y[x]^2) - x/(x^2+y[x]^2)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x/sqrt(x**2 + y(x)**2 + 1) - x*Derivative(y(x), x)/(x**2 + y(x)**2) + y(x)*Derivative(y(x), x)/sqrt(x**2 + y(x)**2 + 1) + y(x)/(x**2 + y(x)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out