Internal
problem
ID
[5775]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
7
Problem
number
:
First
order
with
homogeneous
Coefficients.
Exercise
7.6,
page
61
Date
solved
:
Tuesday, March 04, 2025 at 11:41:59 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=2*x^2*y(x)+y(x)^3+(x*y(x)^2-2*x^3)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x^2*y[x]+y[x]^3)+(x*y[x]^2-2*x^3)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*y(x) + (-2*x**3 + x*y(x)**2)*Derivative(y(x), x) + y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)