Internal
problem
ID
[5843]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
11,
Bernoulli
Equations
Problem
number
:
Exercise
11.5,
page
97
Date
solved
:
Tuesday, March 04, 2025 at 11:47:59 PM
CAS
classification
:
[_linear]
ode:=diff(r(theta),theta) = (r(theta)+exp(-theta))*tan(theta); dsolve(ode,r(theta), singsol=all);
ode=D[ r[\[Theta]], \[Theta] ]==(r[\[Theta]]+Exp[-\[Theta]])*Tan[\[Theta]]; ic={}; DSolve[{ode,ic},r[\[Theta]],\[Theta],IncludeSingularSolutions->True]
from sympy import * theta = symbols("theta") r = Function("r") ode = Eq((-r(theta) - exp(-theta))*tan(theta) + Derivative(r(theta), theta),0) ics = {} dsolve(ode,func=r(theta),ics=ics)