32.5.14 problem Exercise 11.15, page 97

Internal problem ID [5852]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations
Problem number : Exercise 11.15, page 97
Date solved : Tuesday, March 04, 2025 at 11:48:25 PM
CAS classification : [_linear]

\begin{align*} y^{\prime }+y \cos \left (x \right )&=\frac {\sin \left (2 x \right )}{2} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=diff(y(x),x)+y(x)*cos(x) = 1/2*sin(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \sin \left (x \right )-1+{\mathrm e}^{-\sin \left (x \right )} c_{1} \]
Mathematica. Time used: 0.047 (sec). Leaf size: 18
ode=D[y[x],x]+y[x]*Cos[x]==1/2*Sin[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \sin (x)+c_1 e^{-\sin (x)}-1 \]
Sympy. Time used: 0.442 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)*cos(x) - sin(2*x)/2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- \sin {\left (x \right )}} + \sin {\left (x \right )} - 1 \]