32.5.18 problem Exercise 11.19, page 97

Internal problem ID [5856]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations
Problem number : Exercise 11.19, page 97
Date solved : Tuesday, March 04, 2025 at 11:48:36 PM
CAS classification : [_Bernoulli]

\begin{align*} x y^{\prime }-y \left (2 y \ln \left (x \right )-1\right )&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=x*diff(y(x),x)-y(x)*(2*y(x)*ln(x)-1) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {1}{2+c_{1} x +2 \ln \left (x \right )} \]
Mathematica. Time used: 0.15 (sec). Leaf size: 22
ode=x*D[y[x],x]-y[x]*(2*y[x]*Log[x]-1)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{2 \log (x)+c_1 x+2} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.237 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - (2*y(x)*log(x) - 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {1}{C_{1} x + 2 \log {\left (x \right )} + 2} \]