Internal
problem
ID
[5856]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
11,
Bernoulli
Equations
Problem
number
:
Exercise
11.19,
page
97
Date
solved
:
Tuesday, March 04, 2025 at 11:48:36 PM
CAS
classification
:
[_Bernoulli]
ode:=x*diff(y(x),x)-y(x)*(2*y(x)*ln(x)-1) = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]-y[x]*(2*y[x]*Log[x]-1)==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) - (2*y(x)*log(x) - 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)