Internal
problem
ID
[5900]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
12,
Miscellaneous
Methods
Problem
number
:
Exercise
12.35,
page
103
Date
solved
:
Tuesday, March 04, 2025 at 11:54:47 PM
CAS
classification
:
[_separable]
ode:=(x^2-1)*diff(y(x),x)-2*x*y(x)*ln(y(x)) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2-1)*D[y[x],x]-2*x*y[x]*Log[y[x]]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*y(x)*log(y(x)) + (x**2 - 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)