32.7.2 problem Exercise 20.2, page 220

Internal problem ID [5917]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number : Exercise 20.2, page 220
Date solved : Tuesday, March 04, 2025 at 11:58:59 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)-3*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = {\mathrm e}^{x} c_{1} +{\mathrm e}^{2 x} c_{2} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 18
ode=D[y[x],{x,2}]-3*D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^x \left (c_2 e^x+c_1\right ) \]
Sympy. Time used: 0.141 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x) - 3*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} e^{x}\right ) e^{x} \]