32.7.17 problem Exercise 20.18, page 220

Internal problem ID [5932]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number : Exercise 20.18, page 220
Date solved : Tuesday, March 04, 2025 at 11:59:15 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 20
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+3*diff(diff(diff(y(x),x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = c_{1} +c_{2} x +c_3 \,x^{2}+c_4 \,{\mathrm e}^{-3 x} \]
Mathematica. Time used: 0.029 (sec). Leaf size: 28
ode=D[y[x],{x,4}]+3*D[y[x],{x,3}]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {1}{27} c_1 e^{-3 x}+x (c_4 x+c_3)+c_2 \]
Sympy. Time used: 0.083 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x + C_{3} x^{2} + C_{4} e^{- 3 x} \]