32.7.27 problem Exercise 20.28, page 220

Internal problem ID [5942]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number : Exercise 20.28, page 220
Date solved : Tuesday, March 04, 2025 at 11:59:29 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+8 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 35
ode:=diff(diff(diff(y(x),x),x),x)+8*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \left (c_{2} {\mathrm e}^{3 x} \sin \left (\sqrt {3}\, x \right )+c_3 \,{\mathrm e}^{3 x} \cos \left (\sqrt {3}\, x \right )+c_{1} \right ) {\mathrm e}^{-2 x} \]
Mathematica. Time used: 0.004 (sec). Leaf size: 42
ode=D[y[x],{x,3}]+8*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 e^{-2 x}+c_3 e^x \cos \left (\sqrt {3} x\right )+c_2 e^x \sin \left (\sqrt {3} x\right ) \]
Sympy. Time used: 0.105 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(8*y(x) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{- 2 x} + \left (C_{1} \sin {\left (\sqrt {3} x \right )} + C_{2} \cos {\left (\sqrt {3} x \right )}\right ) e^{x} \]