32.7.29 problem Exercise 20.30, page 220

Internal problem ID [5944]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number : Exercise 20.30, page 220
Date solved : Tuesday, March 04, 2025 at 11:59:30 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 22
ode:=diff(diff(diff(diff(diff(y(x),x),x),x),x),x)+2*diff(diff(diff(y(x),x),x),x)+diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \left (c_5 x +c_3 \right ) \cos \left (x \right )+\left (c_4 x +c_{2} \right ) \sin \left (x \right )+c_{1} \]
Mathematica. Time used: 0.063 (sec). Leaf size: 35
ode=D[y[x],{x,5}]+2*D[y[x],{x,3}]+D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to (-c_4 x+c_2-c_3) \cos (x)+(c_2 x+c_1+c_4) \sin (x)+c_5 \]
Sympy. Time used: 0.145 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) + 2*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 5)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \left (C_{2} + C_{3} x\right ) \sin {\left (x \right )} + \left (C_{4} + C_{5} x\right ) \cos {\left (x \right )} \]