36.5.8 problem 8

Internal problem ID [6352]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 8, Series solutions of differential equations. Section 8.3. page 443
Problem number : 8
Date solved : Monday, January 27, 2025 at 01:57:55 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} {\mathrm e}^{x} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+2 y x&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 54

Order:=6; 
dsolve(exp(x)*diff(y(x),x$2)-(x^2-1)*diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{3} x^{3}+\frac {1}{4} x^{4}-\frac {3}{20} x^{5}\right ) y \left (0\right )+\left (x -\frac {1}{2} x^{2}+\frac {1}{3} x^{3}-\frac {7}{24} x^{4}+\frac {23}{120} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 63

AsymptoticDSolveValue[Exp[x]*D[y[x],{x,2}]-(x^2-1)*D[y[x],x]+2*x*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (-\frac {3 x^5}{20}+\frac {x^4}{4}-\frac {x^3}{3}+1\right )+c_2 \left (\frac {23 x^5}{120}-\frac {7 x^4}{24}+\frac {x^3}{3}-\frac {x^2}{2}+x\right ) \]