36.5.16 problem 17

Internal problem ID [6360]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 8, Series solutions of differential equations. Section 8.3. page 443
Problem number : 17
Date solved : Monday, January 27, 2025 at 01:58:08 PM
CAS classification : [_Lienard]

\begin{align*} w^{\prime \prime }-x^{2} w^{\prime }+w&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 49

Order:=6; 
dsolve(diff(w(x),x$2)-x^2*diff(w(x),x)+w(x)=0,w(x),type='series',x=0);
 
\[ w = \left (1-\frac {1}{2} x^{2}+\frac {1}{24} x^{4}-\frac {1}{20} x^{5}\right ) w \left (0\right )+\left (x -\frac {1}{6} x^{3}+\frac {1}{12} x^{4}+\frac {1}{120} x^{5}\right ) w^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 56

AsymptoticDSolveValue[D[w[x],{x,2}]-x^2*D[w[x],x]+w[x]==0,w[x],{x,0,"6"-1}]
 
\[ w(x)\to c_2 \left (\frac {x^5}{120}+\frac {x^4}{12}-\frac {x^3}{6}+x\right )+c_1 \left (-\frac {x^5}{20}+\frac {x^4}{24}-\frac {x^2}{2}+1\right ) \]