32.9.8 problem Exercise 22.8, page 240

Internal problem ID [5982]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 4. Higher order linear differential equations. Lesson 22. Variation of Parameters
Problem number : Exercise 22.8, page 240
Date solved : Wednesday, March 05, 2025 at 12:01:38 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=4 x \sin \left (x \right ) \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 21
ode:=diff(diff(y(x),x),x)+y(x) = 4*x*sin(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \left (-x^{2}+c_{1} \right ) \cos \left (x \right )+\sin \left (x \right ) \left (c_{2} +x \right ) \]
Mathematica. Time used: 0.027 (sec). Leaf size: 27
ode=D[y[x],{x,2}]+y[x]==4*x*Sin[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \left (-x^2+\frac {1}{2}+c_1\right ) \cos (x)+(x+c_2) \sin (x) \]
Sympy. Time used: 0.106 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*x*sin(x) + y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} - x^{2}\right ) \cos {\left (x \right )} + \left (C_{2} + x\right ) \sin {\left (x \right )} \]