Internal
problem
ID
[5982]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
4.
Higher
order
linear
differential
equations.
Lesson
22.
Variation
of
Parameters
Problem
number
:
Exercise
22.8,
page
240
Date
solved
:
Wednesday, March 05, 2025 at 12:01:38 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+y(x) = 4*x*sin(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+y[x]==4*x*Sin[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x*sin(x) + y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)