36.6.26 problem 29

Internal problem ID [6387]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 8, Series solutions of differential equations. Section 8.4. page 449
Problem number : 29
Date solved : Monday, January 27, 2025 at 01:58:39 PM
CAS classification : [_Gegenbauer]

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 81

Order:=6; 
dsolve((1-x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+n*(n+1)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {n \left (n +1\right ) x^{2}}{2}+\frac {n \left (n^{3}+2 n^{2}-5 n -6\right ) x^{4}}{24}\right ) y \left (0\right )+\left (x -\frac {\left (n^{2}+n -2\right ) x^{3}}{6}+\frac {\left (n^{4}+2 n^{3}-13 n^{2}-14 n +24\right ) x^{5}}{120}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 120

AsymptoticDSolveValue[(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+n*(n+1)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {1}{120} \left (n^2+n\right )^2 x^5+\frac {7}{60} \left (-n^2-n\right ) x^5+\frac {1}{6} \left (-n^2-n\right ) x^3+\frac {x^5}{5}+\frac {x^3}{3}+x\right )+c_1 \left (\frac {1}{24} \left (n^2+n\right )^2 x^4+\frac {1}{4} \left (-n^2-n\right ) x^4+\frac {1}{2} \left (-n^2-n\right ) x^2+1\right ) \]