Internal
problem
ID
[6018]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
8.
Special
second
order
equations.
Lesson
35.
Independent
variable
x
absent
Problem
number
:
Exercise
35.23(c),
page
504
Date
solved
:
Thursday, March 13, 2025 at 05:44:34 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=x*y(x)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)^2+(1+y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*y[x]*D[y[x],{x,2}]-2*x*(D[y[x],x])^2+(1+y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x)*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x)**2 + (y(x) + 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt(8*x**2*y(x)*Derivative(y(x), (x, 2)) + y(x)**2 + 2*y(x) + 1) + y(x) + 1)/(4*x) cannot be solved by the factorable group method