Internal
problem
ID
[6439]
Book
:
Engineering
Mathematics.
By
K.
A.
Stroud.
5th
edition.
Industrial
press
Inc.
NY.
2001
Section
:
Program
24.
First
order
differential
equations.
Further
problems
24.
page
1068
Problem
number
:
10
Date
solved
:
Monday, January 27, 2025 at 02:03:26 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
\begin{align*} \left (x^{3}+3 x y^{2}\right ) y^{\prime }&=y^{3}+3 x^{2} y \end{align*}
Time used: 0.034 (sec). Leaf size: 23
\[
y = \operatorname {RootOf}\left (x c_1 \,\textit {\_Z}^{4}-c_1 x -\textit {\_Z} \right )^{2} x
\]
Time used: 60.158 (sec). Leaf size: 1659
\begin{align*}
y(x)\to \frac {1}{6} \left (-\sqrt {3} \sqrt {4 x^2+\frac {16 \sqrt [3]{2} x^4}{\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}+\frac {\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}{\sqrt [3]{2}}}-3 \sqrt {\frac {8 x^2}{3}-\frac {16 \sqrt [3]{2} x^4}{3 \sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}-\frac {2 \sqrt {3} e^{c_1} x}{\sqrt {4 x^2+\frac {16 \sqrt [3]{2} x^4}{\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}+\frac {\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}{\sqrt [3]{2}}}}-\frac {\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}{3 \sqrt [3]{2}}}\right ) \\
y(x)\to \frac {1}{6} \left (3 \sqrt {\frac {8 x^2}{3}-\frac {16 \sqrt [3]{2} x^4}{3 \sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}-\frac {2 \sqrt {3} e^{c_1} x}{\sqrt {4 x^2+\frac {16 \sqrt [3]{2} x^4}{\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}+\frac {\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}{\sqrt [3]{2}}}}-\frac {\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}{3 \sqrt [3]{2}}}-\sqrt {3} \sqrt {4 x^2+\frac {16 \sqrt [3]{2} x^4}{\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}+\frac {\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}{\sqrt [3]{2}}}\right ) \\
y(x)\to \frac {1}{6} \left (\sqrt {3} \sqrt {4 x^2+\frac {16 \sqrt [3]{2} x^4}{\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}+\frac {\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}{\sqrt [3]{2}}}-3 \sqrt {\frac {8 x^2}{3}-\frac {16 \sqrt [3]{2} x^4}{3 \sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}+\frac {2 \sqrt {3} e^{c_1} x}{\sqrt {4 x^2+\frac {16 \sqrt [3]{2} x^4}{\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}+\frac {\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}{\sqrt [3]{2}}}}-\frac {\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}{3 \sqrt [3]{2}}}\right ) \\
y(x)\to \frac {1}{6} \left (\sqrt {3} \sqrt {4 x^2+\frac {16 \sqrt [3]{2} x^4}{\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}+\frac {\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}{\sqrt [3]{2}}}+3 \sqrt {\frac {8 x^2}{3}-\frac {16 \sqrt [3]{2} x^4}{3 \sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}+\frac {2 \sqrt {3} e^{c_1} x}{\sqrt {4 x^2+\frac {16 \sqrt [3]{2} x^4}{\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}+\frac {\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}{\sqrt [3]{2}}}}-\frac {\sqrt [3]{128 x^6+27 e^{2 c_1} x^2+3 \sqrt {768 e^{2 c_1} x^8+81 e^{4 c_1} x^4}}}{3 \sqrt [3]{2}}}\right ) \\
\end{align*}