40.2.5 problem 28

Internal problem ID [6583]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 4. Equations of first order and first degree (Variable separable). Supplemetary problems. Page 22
Problem number : 28
Date solved : Monday, January 27, 2025 at 02:14:12 PM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x y^{2}+y+\left (x^{2} y-x \right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.023 (sec). Leaf size: 19

dsolve((x*y(x)^2+y(x))+(x^2*y(x)-x)*diff(y(x),x)=0,y(x), singsol=all)
 
\[ y = -\frac {\operatorname {LambertW}\left (-x^{2} {\mathrm e}^{-2 c_1}\right )}{x} \]

Solution by Mathematica

Time used: 7.828 (sec). Leaf size: 33

DSolve[(x*y[x]^2+y[x])+(x^2*y[x]-x)*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {W\left (e^{-1+\frac {9 c_1}{2^{2/3}}} x^2\right )}{x} \\ y(x)\to 0 \\ \end{align*}