40.3.13 problem 24 (d)

Internal problem ID [6617]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary problems. Page 33
Problem number : 24 (d)
Date solved : Monday, January 27, 2025 at 02:16:04 PM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, _Bernoulli]

\begin{align*} x^{2}+y^{2}+2 x y y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 47

dsolve((x^2+y(x)^2)+2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)
 
\begin{align*} y &= -\frac {\sqrt {3}\, \sqrt {-x \left (x^{3}-3 c_1 \right )}}{3 x} \\ y &= \frac {\sqrt {3}\, \sqrt {-x \left (x^{3}-3 c_1 \right )}}{3 x} \\ \end{align*}

Solution by Mathematica

Time used: 0.209 (sec). Leaf size: 60

DSolve[(x^2+y[x]^2)+2*x*y[x]*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {\sqrt {-x^3+3 c_1}}{\sqrt {3} \sqrt {x}} \\ y(x)\to \frac {\sqrt {-x^3+3 c_1}}{\sqrt {3} \sqrt {x}} \\ \end{align*}