40.3.15 problem 24 (L)

Internal problem ID [6619]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary problems. Page 33
Problem number : 24 (L)
Date solved : Monday, January 27, 2025 at 02:16:10 PM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} x +y+1-\left (x -y-3\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.018 (sec). Leaf size: 31

dsolve((x+y(x)+1)-(x-y(x)-3)*diff(y(x),x)=0,y(x), singsol=all)
 
\[ y = -2-\tan \left (\operatorname {RootOf}\left (2 \textit {\_Z} +\ln \left (\sec \left (\textit {\_Z} \right )^{2}\right )+2 \ln \left (x -1\right )+2 c_1 \right )\right ) \left (x -1\right ) \]

Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 58

DSolve[(x+y[x]+1)-(x-y[x]-3)*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [2 \arctan \left (\frac {y(x)+x+1}{y(x)-x+3}\right )+\log \left (\frac {x^2+y(x)^2+4 y(x)-2 x+5}{2 (x-1)^2}\right )+2 \log (x-1)+c_1=0,y(x)\right ] \]