Internal
problem
ID
[6629]
Book
:
Schaums
Outline.
Theory
and
problems
of
Differential
Equations,
1st
edition.
Frank
Ayres.
McGraw
Hill
1952
Section
:
Chapter
5.
Equations
of
first
order
and
first
degree
(Exact
equations).
Supplemetary
problems.
Page
33
Problem
number
:
25
(j)
Date
solved
:
Monday, January 27, 2025 at 02:16:20 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
Time used: 0.142 (sec). Leaf size: 673
\begin{align*}
y &= \frac {3+\frac {{\left (\left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}}-c_1^{2}\right )}^{2}}{c_1^{2} \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}}}}{2 x^{2}} \\
y &= \frac {\left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{4}/{3}}+c_1^{2} \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}}+c_1^{4}}{2 c_1^{2} \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}} x^{2}} \\
y &= \frac {\left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{4}/{3}}+c_1^{2} \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}}+c_1^{4}}{2 c_1^{2} \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}} x^{2}} \\
y &= \frac {2 c_1^{2} \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}}+\left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{4}/{3}} \left (i \sqrt {3}-1\right )-c_1^{4} \left (1+i \sqrt {3}\right )}{4 \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}} x^{2} c_1^{2}} \\
y &= -\frac {-2 c_1^{2} \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}}+\left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{4}/{3}} \left (1+i \sqrt {3}\right )-\left (i \sqrt {3}-1\right ) c_1^{4}}{4 \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}} x^{2} c_1^{2}} \\
y &= \frac {2 c_1^{2} \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}}+\left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{4}/{3}} \left (i \sqrt {3}-1\right )-c_1^{4} \left (1+i \sqrt {3}\right )}{4 \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}} x^{2} c_1^{2}} \\
y &= -\frac {-2 c_1^{2} \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}}+\left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{4}/{3}} \left (1+i \sqrt {3}\right )-\left (i \sqrt {3}-1\right ) c_1^{4}}{4 \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}} x^{2} c_1^{2}} \\
y &= \frac {2 c_1^{2} \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}}+\left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{4}/{3}} \left (i \sqrt {3}-1\right )-c_1^{4} \left (1+i \sqrt {3}\right )}{4 \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}} x^{2} c_1^{2}} \\
y &= -\frac {-2 c_1^{2} \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}}+\left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{4}/{3}} \left (1+i \sqrt {3}\right )-\left (i \sqrt {3}-1\right ) c_1^{4}}{4 \left (x^{3}+\sqrt {c_1^{6}+x^{6}}\right )^{{2}/{3}} x^{2} c_1^{2}} \\
\end{align*}
Time used: 57.790 (sec). Leaf size: 452
\begin{align*}
y(x)\to \frac {e^{-6 c_1} \sqrt [3]{-2 e^{12 c_1} x^6+2 \sqrt {-e^{24 c_1} x^6 \left (-x^6+e^{6 c_1}\right )}+e^{18 c_1}}+\frac {e^{6 c_1}}{\sqrt [3]{-2 e^{12 c_1} x^6+2 \sqrt {-e^{24 c_1} x^6 \left (-x^6+e^{6 c_1}\right )}+e^{18 c_1}}}+1}{2 x^2} \\
y(x)\to \frac {i \left (\sqrt {3}+i\right ) e^{-6 c_1} \sqrt [3]{-2 e^{12 c_1} x^6+2 \sqrt {-e^{24 c_1} x^6 \left (-x^6+e^{6 c_1}\right )}+e^{18 c_1}}-\frac {\left (1+i \sqrt {3}\right ) e^{6 c_1}}{\sqrt [3]{-2 e^{12 c_1} x^6+2 \sqrt {-e^{24 c_1} x^6 \left (-x^6+e^{6 c_1}\right )}+e^{18 c_1}}}+2}{4 x^2} \\
y(x)\to \frac {-\left (\left (1+i \sqrt {3}\right ) e^{-6 c_1} \sqrt [3]{-2 e^{12 c_1} x^6+2 \sqrt {-e^{24 c_1} x^6 \left (-x^6+e^{6 c_1}\right )}+e^{18 c_1}}\right )+\frac {i \left (\sqrt {3}+i\right ) e^{6 c_1}}{\sqrt [3]{-2 e^{12 c_1} x^6+2 \sqrt {-e^{24 c_1} x^6 \left (-x^6+e^{6 c_1}\right )}+e^{18 c_1}}}+2}{4 x^2} \\
y(x)\to 0 \\
y(x)\to \frac {3}{2 x^2} \\
\end{align*}