Internal
problem
ID
[6636]
Book
:
Schaums
Outline.
Theory
and
problems
of
Differential
Equations,
1st
edition.
Frank
Ayres.
McGraw
Hill
1952
Section
:
Chapter
5.
Equations
of
first
order
and
first
degree
(Exact
equations).
Supplemetary
problems.
Page
33
Problem
number
:
26
(f)
Date
solved
:
Monday, January 27, 2025 at 02:16:27 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
\begin{align*} 3 x^{2} y^{2}+4 \left (x^{3} y-3\right ) y^{\prime }&=0 \end{align*}
Time used: 0.706 (sec). Leaf size: 30
\[
y = \frac {\operatorname {RootOf}\left (c_1 \,\textit {\_Z}^{12}+4 c_1 \,\textit {\_Z}^{3}-x^{3}\right )^{9}+4}{x^{3}}
\]
Time used: 60.292 (sec). Leaf size: 1175
\begin{align*}
y(x)\to \frac {1}{x^3}-\frac {\sqrt {-\frac {3^{2/3} c_1}{\sqrt [3]{\sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-9 c_1}}+\frac {6}{x^6}+\frac {\sqrt [3]{3 \sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-27 c_1}}{x^3}}}{\sqrt {6}}-\frac {1}{2} \sqrt {\frac {2 c_1}{\sqrt [3]{3 \sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-27 c_1}}+\frac {8}{x^6}-\frac {2 \sqrt [3]{\sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-9 c_1}}{3^{2/3} x^3}-\frac {8 \sqrt {6}}{x^9 \sqrt {-\frac {3^{2/3} c_1}{\sqrt [3]{\sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-9 c_1}}+\frac {6}{x^6}+\frac {\sqrt [3]{3 \sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-27 c_1}}{x^3}}}} \\
y(x)\to \frac {1}{x^3}-\frac {\sqrt {-\frac {3^{2/3} c_1}{\sqrt [3]{\sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-9 c_1}}+\frac {6}{x^6}+\frac {\sqrt [3]{3 \sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-27 c_1}}{x^3}}}{\sqrt {6}}+\frac {1}{2} \sqrt {\frac {2 c_1}{\sqrt [3]{3 \sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-27 c_1}}+\frac {8}{x^6}-\frac {2 \sqrt [3]{\sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-9 c_1}}{3^{2/3} x^3}-\frac {8 \sqrt {6}}{x^9 \sqrt {-\frac {3^{2/3} c_1}{\sqrt [3]{\sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-9 c_1}}+\frac {6}{x^6}+\frac {\sqrt [3]{3 \sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-27 c_1}}{x^3}}}} \\
y(x)\to \frac {1}{x^3}+\frac {\sqrt {-\frac {3^{2/3} c_1}{\sqrt [3]{\sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-9 c_1}}+\frac {6}{x^6}+\frac {\sqrt [3]{3 \sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-27 c_1}}{x^3}}}{\sqrt {6}}-\frac {1}{2} \sqrt {\frac {2 c_1}{\sqrt [3]{3 \sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-27 c_1}}+\frac {8}{x^6}-\frac {2 \sqrt [3]{\sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-9 c_1}}{3^{2/3} x^3}+\frac {8 \sqrt {6}}{x^9 \sqrt {-\frac {3^{2/3} c_1}{\sqrt [3]{\sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-9 c_1}}+\frac {6}{x^6}+\frac {\sqrt [3]{3 \sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-27 c_1}}{x^3}}}} \\
y(x)\to \frac {1}{x^3}+\frac {\sqrt {-\frac {3^{2/3} c_1}{\sqrt [3]{\sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-9 c_1}}+\frac {6}{x^6}+\frac {\sqrt [3]{3 \sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-27 c_1}}{x^3}}}{\sqrt {6}}+\frac {1}{2} \sqrt {\frac {2 c_1}{\sqrt [3]{3 \sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-27 c_1}}+\frac {8}{x^6}-\frac {2 \sqrt [3]{\sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-9 c_1}}{3^{2/3} x^3}+\frac {8 \sqrt {6}}{x^9 \sqrt {-\frac {3^{2/3} c_1}{\sqrt [3]{\sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-9 c_1}}+\frac {6}{x^6}+\frac {\sqrt [3]{3 \sqrt {3} \sqrt {c_1{}^2 \left (27+c_1 x^9\right )}-27 c_1}}{x^3}}}} \\
\end{align*}