40.3.35 problem 26 (i)

Internal problem ID [6639]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 5. Equations of first order and first degree (Exact equations). Supplemetary problems. Page 33
Problem number : 26 (i)
Date solved : Monday, January 27, 2025 at 02:16:29 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} y \left (y^{2}-2 x^{2}\right )+x \left (2 y^{2}-x^{2}\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.090 (sec). Leaf size: 71

dsolve(y(x)*(y(x)^2-2*x^2)+x*(2*y(x)^2-x^2)*diff(y(x),x)=0,y(x), singsol=all)
 
\begin{align*} y &= \frac {\sqrt {\frac {2 c_1 \,x^{3}-2 \sqrt {c_1^{2} x^{6}+4}}{c_1 \,x^{3}}}\, x}{2} \\ y &= \frac {\sqrt {2}\, \sqrt {\frac {c_1 \,x^{3}+\sqrt {c_1^{2} x^{6}+4}}{c_1 \,x^{3}}}\, x}{2} \\ \end{align*}

Solution by Mathematica

Time used: 14.401 (sec). Leaf size: 277

DSolve[y[x]*(y[x]^2-2*x^2)+x*(2*y[x]^2-x^2)*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {\sqrt {x^2-\frac {\sqrt {x^6-4 e^{2 c_1}}}{x}}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {x^2-\frac {\sqrt {x^6-4 e^{2 c_1}}}{x}}}{\sqrt {2}} \\ y(x)\to -\frac {\sqrt {\frac {x^3+\sqrt {x^6-4 e^{2 c_1}}}{x}}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {\frac {x^3+\sqrt {x^6-4 e^{2 c_1}}}{x}}}{\sqrt {2}} \\ y(x)\to -\frac {\sqrt {x^2-\frac {\sqrt {x^6}}{x}}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {x^2-\frac {\sqrt {x^6}}{x}}}{\sqrt {2}} \\ y(x)\to -\frac {\sqrt {\frac {\sqrt {x^6}+x^3}{x}}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {\frac {\sqrt {x^6}+x^3}{x}}}{\sqrt {2}} \\ \end{align*}