36.1.6 problem 6

Internal problem ID [6261]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 2, First order differential equations. Section 2.2, Separable Equations. Exercises. page 46
Problem number : 6
Date solved : Wednesday, March 05, 2025 at 12:27:49 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class C`]]

\begin{align*} s^{2}+s^{\prime }&=\frac {s+1}{s t} \end{align*}

Maple
ode:=s(t)^2+diff(s(t),t) = (s(t)+1)/s(t)/t; 
dsolve(ode,s(t), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=s[t]^2+D[s[t],t]==(s[t]+1)/(s[t]*t); 
ic={}; 
DSolve[{ode,ic},s[t],t,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
t = symbols("t") 
s = Function("s") 
ode = Eq(s(t)**2 + Derivative(s(t), t) - (s(t) + 1)/(t*s(t)),0) 
ics = {} 
dsolve(ode,func=s(t),ics=ics)
 
RecursionError : maximum recursion depth exceeded