36.1.8 problem 8

Internal problem ID [6263]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 2, First order differential equations. Section 2.2, Separable Equations. Exercises. page 46
Problem number : 8
Date solved : Wednesday, March 05, 2025 at 12:27:55 AM
CAS classification : [_separable]

\begin{align*} x^{\prime }&=3 x t^{2} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 10
ode:=diff(x(t),t) = 3*x(t)*t^2; 
dsolve(ode,x(t), singsol=all);
 
\[ x \left (t \right ) = c_{1} {\mathrm e}^{t^{3}} \]
Mathematica. Time used: 0.025 (sec). Leaf size: 18
ode=D[x[t],t]==3*x[t]*t^2; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to c_1 e^{t^3} \\ x(t)\to 0 \\ \end{align*}
Sympy. Time used: 0.233 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(-3*t**2*x(t) + Derivative(x(t), t),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = C_{1} e^{t^{3}} \]