36.1.12 problem 12

Internal problem ID [6267]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 2, First order differential equations. Section 2.2, Separable Equations. Exercises. page 46
Problem number : 12
Date solved : Wednesday, March 05, 2025 at 12:28:08 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {\sec \left (y\right )^{2}}{x^{2}+1} \end{align*}

Maple. Time used: 0.094 (sec). Leaf size: 81
ode:=diff(y(x),x) = sec(y(x))^2/(x^2+1); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\arcsin \left (\operatorname {RootOf}\left (\textit {\_Z} +2 x^{2} \textit {\_Z} +\textit {\_Z} \,x^{4}-x^{4} \sin \left (-\textit {\_Z} +4 c_{1} \right )+4 x^{3} \cos \left (-\textit {\_Z} +4 c_{1} \right )+6 x^{2} \sin \left (-\textit {\_Z} +4 c_{1} \right )-4 x \cos \left (-\textit {\_Z} +4 c_{1} \right )-\sin \left (-\textit {\_Z} +4 c_{1} \right )\right )\right )}{2} \]
Mathematica. Time used: 0.584 (sec). Leaf size: 32
ode=D[y[x],x]==Sec[y[x]]^2/(1+x^2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \text {InverseFunction}\left [2 \left (\frac {\text {$\#$1}}{2}+\frac {1}{4} \sin (2 \text {$\#$1})\right )\&\right ][2 \arctan (x)+c_1] \]
Sympy. Time used: 1.766 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - 1/((x**2 + 1)*cos(y(x))**2),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \frac {y{\left (x \right )}}{2} + \frac {\sin {\left (y{\left (x \right )} \right )} \cos {\left (y{\left (x \right )} \right )}}{2} - \operatorname {atan}{\left (x \right )} = C_{1} \]