40.5.8 problem 24

Internal problem ID [6673]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 9. Equations of first order and higher degree. Supplemetary problems. Page 65
Problem number : 24
Date solved : Monday, January 27, 2025 at 02:18:54 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _rational]

\begin{align*} 16 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y&=0 \end{align*}

Solution by Maple

Time used: 0.106 (sec). Leaf size: 105

dsolve(16*y(x)^3*diff(y(x),x)^2-4*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)
 
\begin{align*} y &= -\frac {\sqrt {2}\, \sqrt {-x}}{2} \\ y &= \frac {\sqrt {2}\, \sqrt {-x}}{2} \\ y &= -\frac {\sqrt {x}\, \sqrt {2}}{2} \\ y &= \frac {\sqrt {x}\, \sqrt {2}}{2} \\ y &= 0 \\ y &= \operatorname {RootOf}\left (-\ln \left (x \right )+2 \left (\int _{}^{\textit {\_Z}}-\frac {4 \textit {\_a}^{4}-\sqrt {-4 \textit {\_a}^{4}+1}-1}{\textit {\_a} \left (4 \textit {\_a}^{4}-1\right )}d \textit {\_a} \right )+c_1 \right ) \sqrt {x} \\ \end{align*}

Solution by Mathematica

Time used: 0.539 (sec). Leaf size: 307

DSolve[16*y[x]^3*D[y[x],x]^2-4*x*D[y[x],x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\sqrt [4]{2} \sqrt [4]{e^{c_1} \left (x-2 e^{c_1}\right )} \\ y(x)\to -i \sqrt [4]{2} \sqrt [4]{e^{c_1} \left (x-2 e^{c_1}\right )} \\ y(x)\to i \sqrt [4]{2} \sqrt [4]{e^{c_1} \left (x-2 e^{c_1}\right )} \\ y(x)\to \sqrt [4]{2} \sqrt [4]{e^{c_1} \left (x-2 e^{c_1}\right )} \\ y(x)\to -\frac {\sqrt [4]{-e^{c_1} \left (-2 x+e^{c_1}\right )}}{\sqrt {2}} \\ y(x)\to -\frac {i \sqrt [4]{-e^{c_1} \left (-2 x+e^{c_1}\right )}}{\sqrt {2}} \\ y(x)\to \frac {i \sqrt [4]{-e^{c_1} \left (-2 x+e^{c_1}\right )}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt [4]{-e^{c_1} \left (-2 x+e^{c_1}\right )}}{\sqrt {2}} \\ y(x)\to 0 \\ y(x)\to -\frac {\sqrt {x}}{\sqrt {2}} \\ y(x)\to -\frac {i \sqrt {x}}{\sqrt {2}} \\ y(x)\to \frac {i \sqrt {x}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {x}}{\sqrt {2}} \\ \end{align*}