40.5.13 problem 29

Internal problem ID [6678]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 9. Equations of first order and higher degree. Supplemetary problems. Page 65
Problem number : 29
Date solved : Monday, January 27, 2025 at 02:20:50 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _dAlembert]

\begin{align*} y&=\left (1+y^{\prime }\right ) x +{y^{\prime }}^{2} \end{align*}

Solution by Maple

Time used: 0.020 (sec). Leaf size: 36

dsolve(y(x)=(1+diff(y(x),x))*x+diff(y(x),x)^2,y(x), singsol=all)
 
\[ y = -\frac {x^{2}}{4}+x +\operatorname {LambertW}\left (\frac {c_1 \,{\mathrm e}^{\frac {x}{2}-1}}{2}\right )^{2}+2 \operatorname {LambertW}\left (\frac {c_1 \,{\mathrm e}^{\frac {x}{2}-1}}{2}\right )+1 \]

Solution by Mathematica

Time used: 2.436 (sec). Leaf size: 177

DSolve[y[x]==(1+D[y[x],x])*x+D[y[x],x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [-\sqrt {x^2+4 y(x)-4 x}+2 \log \left (\sqrt {x^2+4 y(x)-4 x}-x+2\right )-2 \log \left (-x \sqrt {x^2+4 y(x)-4 x}+x^2+4 y(x)-2 x-4\right )+x&=c_1,y(x)\right ] \\ \text {Solve}\left [-4 \text {arctanh}\left (\frac {(x-5) \sqrt {x^2+4 y(x)-4 x}-x^2-4 y(x)+7 x-6}{(x-3) \sqrt {x^2+4 y(x)-4 x}-x^2-4 y(x)+5 x-2}\right )+\sqrt {x^2+4 y(x)-4 x}+x&=c_1,y(x)\right ] \\ \end{align*}