40.5.15 problem 31
Internal
problem
ID
[6680]
Book
:
Schaums
Outline.
Theory
and
problems
of
Differential
Equations,
1st
edition.
Frank
Ayres.
McGraw
Hill
1952
Section
:
Chapter
9.
Equations
of
first
order
and
higher
degree.
Supplemetary
problems.
Page
65
Problem
number
:
31
Date
solved
:
Monday, January 27, 2025 at 02:20:54 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
\begin{align*} y {y^{\prime }}^{2}-x y^{\prime }+3 y&=0 \end{align*}
✓ Solution by Maple
Time used: 2.283 (sec). Leaf size: 159
dsolve(y(x)*diff(y(x),x)^2-x*diff(y(x),x)+3*y(x)=0,y(x), singsol=all)
\begin{align*}
y &= 0 \\
\ln \left (x \right )-\frac {\operatorname {arctanh}\left (\frac {1}{\sqrt {-\frac {-x^{2}+12 y^{2}}{x^{2}}}}\right )}{4}+\frac {5 \,\operatorname {arctanh}\left (\frac {\sqrt {\frac {x^{2}-12 y^{2}}{x^{2}}}}{5}\right )}{4}+\frac {5 \ln \left (\frac {2 x^{2}+y^{2}}{x^{2}}\right )}{8}-\frac {\ln \left (\frac {y}{x}\right )}{4}-c_1 &= 0 \\
\ln \left (x \right )+\frac {\operatorname {arctanh}\left (\frac {1}{\sqrt {-\frac {-x^{2}+12 y^{2}}{x^{2}}}}\right )}{4}-\frac {5 \,\operatorname {arctanh}\left (\frac {\sqrt {\frac {x^{2}-12 y^{2}}{x^{2}}}}{5}\right )}{4}+\frac {5 \ln \left (\frac {2 x^{2}+y^{2}}{x^{2}}\right )}{8}-\frac {\ln \left (\frac {y}{x}\right )}{4}-c_1 &= 0 \\
\end{align*}
✓ Solution by Mathematica
Time used: 60.269 (sec). Leaf size: 1131
DSolve[y[x]*D[y[x],x]^2-x*D[y[x],x]+3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to -\sqrt {\text {Root}\left [62208 \text {$\#$1}^5+622080 \text {$\#$1}^4 x^2+\text {$\#$1}^3 \left (2488320 x^4-864 e^{8 c_1}\right )+\text {$\#$1}^2 \left (4976640 x^6+16416 e^{8 c_1} x^2\right )+\text {$\#$1} \left (4976640 x^8-13968 e^{8 c_1} x^4+3 e^{16 c_1}\right )+1990656 x^{10}-512 e^{8 c_1} x^6\&,1\right ]} \\
y(x)\to \sqrt {\text {Root}\left [62208 \text {$\#$1}^5+622080 \text {$\#$1}^4 x^2+\text {$\#$1}^3 \left (2488320 x^4-864 e^{8 c_1}\right )+\text {$\#$1}^2 \left (4976640 x^6+16416 e^{8 c_1} x^2\right )+\text {$\#$1} \left (4976640 x^8-13968 e^{8 c_1} x^4+3 e^{16 c_1}\right )+1990656 x^{10}-512 e^{8 c_1} x^6\&,1\right ]} \\
y(x)\to -\sqrt {\text {Root}\left [62208 \text {$\#$1}^5+622080 \text {$\#$1}^4 x^2+\text {$\#$1}^3 \left (2488320 x^4-864 e^{8 c_1}\right )+\text {$\#$1}^2 \left (4976640 x^6+16416 e^{8 c_1} x^2\right )+\text {$\#$1} \left (4976640 x^8-13968 e^{8 c_1} x^4+3 e^{16 c_1}\right )+1990656 x^{10}-512 e^{8 c_1} x^6\&,2\right ]} \\
y(x)\to \sqrt {\text {Root}\left [62208 \text {$\#$1}^5+622080 \text {$\#$1}^4 x^2+\text {$\#$1}^3 \left (2488320 x^4-864 e^{8 c_1}\right )+\text {$\#$1}^2 \left (4976640 x^6+16416 e^{8 c_1} x^2\right )+\text {$\#$1} \left (4976640 x^8-13968 e^{8 c_1} x^4+3 e^{16 c_1}\right )+1990656 x^{10}-512 e^{8 c_1} x^6\&,2\right ]} \\
y(x)\to -\sqrt {\text {Root}\left [62208 \text {$\#$1}^5+622080 \text {$\#$1}^4 x^2+\text {$\#$1}^3 \left (2488320 x^4-864 e^{8 c_1}\right )+\text {$\#$1}^2 \left (4976640 x^6+16416 e^{8 c_1} x^2\right )+\text {$\#$1} \left (4976640 x^8-13968 e^{8 c_1} x^4+3 e^{16 c_1}\right )+1990656 x^{10}-512 e^{8 c_1} x^6\&,3\right ]} \\
y(x)\to \sqrt {\text {Root}\left [62208 \text {$\#$1}^5+622080 \text {$\#$1}^4 x^2+\text {$\#$1}^3 \left (2488320 x^4-864 e^{8 c_1}\right )+\text {$\#$1}^2 \left (4976640 x^6+16416 e^{8 c_1} x^2\right )+\text {$\#$1} \left (4976640 x^8-13968 e^{8 c_1} x^4+3 e^{16 c_1}\right )+1990656 x^{10}-512 e^{8 c_1} x^6\&,3\right ]} \\
y(x)\to -\sqrt {\text {Root}\left [62208 \text {$\#$1}^5+622080 \text {$\#$1}^4 x^2+\text {$\#$1}^3 \left (2488320 x^4-864 e^{8 c_1}\right )+\text {$\#$1}^2 \left (4976640 x^6+16416 e^{8 c_1} x^2\right )+\text {$\#$1} \left (4976640 x^8-13968 e^{8 c_1} x^4+3 e^{16 c_1}\right )+1990656 x^{10}-512 e^{8 c_1} x^6\&,4\right ]} \\
y(x)\to \sqrt {\text {Root}\left [62208 \text {$\#$1}^5+622080 \text {$\#$1}^4 x^2+\text {$\#$1}^3 \left (2488320 x^4-864 e^{8 c_1}\right )+\text {$\#$1}^2 \left (4976640 x^6+16416 e^{8 c_1} x^2\right )+\text {$\#$1} \left (4976640 x^8-13968 e^{8 c_1} x^4+3 e^{16 c_1}\right )+1990656 x^{10}-512 e^{8 c_1} x^6\&,4\right ]} \\
y(x)\to -\sqrt {\text {Root}\left [62208 \text {$\#$1}^5+622080 \text {$\#$1}^4 x^2+\text {$\#$1}^3 \left (2488320 x^4-864 e^{8 c_1}\right )+\text {$\#$1}^2 \left (4976640 x^6+16416 e^{8 c_1} x^2\right )+\text {$\#$1} \left (4976640 x^8-13968 e^{8 c_1} x^4+3 e^{16 c_1}\right )+1990656 x^{10}-512 e^{8 c_1} x^6\&,5\right ]} \\
y(x)\to \sqrt {\text {Root}\left [62208 \text {$\#$1}^5+622080 \text {$\#$1}^4 x^2+\text {$\#$1}^3 \left (2488320 x^4-864 e^{8 c_1}\right )+\text {$\#$1}^2 \left (4976640 x^6+16416 e^{8 c_1} x^2\right )+\text {$\#$1} \left (4976640 x^8-13968 e^{8 c_1} x^4+3 e^{16 c_1}\right )+1990656 x^{10}-512 e^{8 c_1} x^6\&,5\right ]} \\
\end{align*}