40.6.5 problem 14

Internal problem ID [6685]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 10. Singular solutions, Extraneous loci. Supplemetary problems. Page 74
Problem number : 14
Date solved : Monday, January 27, 2025 at 02:21:05 PM
CAS classification : [_quadrature]

\begin{align*} \left (3 y-1\right )^{2} {y^{\prime }}^{2}&=4 y \end{align*}

Solution by Maple

Time used: 0.023 (sec). Leaf size: 511

dsolve((3*y(x)-1)^2*diff(y(x),x)^2=4*y(x),y(x), singsol=all)
 
\begin{align*} y &= 0 \\ y &= \frac {{\left (\left (-108 x +108 c_1 +12 \sqrt {81 c_1^{2}-162 c_1 x +81 x^{2}-12}\right )^{{2}/{3}}+12\right )}^{2}}{36 \left (-108 x +108 c_1 +12 \sqrt {81 c_1^{2}-162 c_1 x +81 x^{2}-12}\right )^{{2}/{3}}} \\ y &= \frac {{\left (i \sqrt {3}\, \left (-108 x +108 c_1 +12 \sqrt {81 c_1^{2}-162 c_1 x +81 x^{2}-12}\right )^{{2}/{3}}-12 i \sqrt {3}+\left (-108 x +108 c_1 +12 \sqrt {81 c_1^{2}-162 c_1 x +81 x^{2}-12}\right )^{{2}/{3}}+12\right )}^{2}}{144 \left (-108 x +108 c_1 +12 \sqrt {81 c_1^{2}-162 c_1 x +81 x^{2}-12}\right )^{{2}/{3}}} \\ y &= \frac {{\left (\left (i \sqrt {3}-1\right ) \left (-108 x +108 c_1 +12 \sqrt {81 c_1^{2}-162 c_1 x +81 x^{2}-12}\right )^{{2}/{3}}-12 i \sqrt {3}-12\right )}^{2}}{144 \left (-108 x +108 c_1 +12 \sqrt {81 c_1^{2}-162 c_1 x +81 x^{2}-12}\right )^{{2}/{3}}} \\ y &= \frac {{\left (\left (108 x -108 c_1 +12 \sqrt {81 c_1^{2}-162 c_1 x +81 x^{2}-12}\right )^{{2}/{3}}+12\right )}^{2}}{36 \left (108 x -108 c_1 +12 \sqrt {81 c_1^{2}-162 c_1 x +81 x^{2}-12}\right )^{{2}/{3}}} \\ y &= \frac {{\left (i \sqrt {3}\, \left (108 x -108 c_1 +12 \sqrt {81 c_1^{2}-162 c_1 x +81 x^{2}-12}\right )^{{2}/{3}}-12 i \sqrt {3}+\left (108 x -108 c_1 +12 \sqrt {81 c_1^{2}-162 c_1 x +81 x^{2}-12}\right )^{{2}/{3}}+12\right )}^{2}}{144 \left (108 x -108 c_1 +12 \sqrt {81 c_1^{2}-162 c_1 x +81 x^{2}-12}\right )^{{2}/{3}}} \\ y &= \frac {{\left (\left (i \sqrt {3}-1\right ) \left (108 x -108 c_1 +12 \sqrt {81 c_1^{2}-162 c_1 x +81 x^{2}-12}\right )^{{2}/{3}}-12 i \sqrt {3}-12\right )}^{2}}{144 \left (108 x -108 c_1 +12 \sqrt {81 c_1^{2}-162 c_1 x +81 x^{2}-12}\right )^{{2}/{3}}} \\ \end{align*}

Solution by Mathematica

Time used: 4.431 (sec). Leaf size: 892

DSolve[(3*y[x]-1)^2*D[y[x],x]^2==4*y[x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {\left (2+\sqrt [3]{108 x^2+3 \sqrt {3} \sqrt {(-2 x+c_1){}^2 \left (108 x^2-108 c_1 x-16+27 c_1{}^2\right )}-108 c_1 x-8+27 c_1{}^2}\right ){}^2}{6 \sqrt [3]{108 x^2+3 \sqrt {3} \sqrt {(-2 x+c_1){}^2 \left (108 x^2-108 c_1 x-16+27 c_1{}^2\right )}-108 c_1 x-8+27 c_1{}^2}} \\ y(x)\to \frac {1}{24} \left (2 i \left (\sqrt {3}+i\right ) \sqrt [3]{108 x^2+3 \sqrt {3} \sqrt {(-2 x+c_1){}^2 \left (108 x^2-108 c_1 x-16+27 c_1{}^2\right )}-108 c_1 x-8+27 c_1{}^2}+\frac {-8-8 i \sqrt {3}}{\sqrt [3]{108 x^2+3 \sqrt {3} \sqrt {(-2 x+c_1){}^2 \left (108 x^2-108 c_1 x-16+27 c_1{}^2\right )}-108 c_1 x-8+27 c_1{}^2}}+16\right ) \\ y(x)\to \frac {1}{24} \left (-2 \left (1+i \sqrt {3}\right ) \sqrt [3]{108 x^2+3 \sqrt {3} \sqrt {(-2 x+c_1){}^2 \left (108 x^2-108 c_1 x-16+27 c_1{}^2\right )}-108 c_1 x-8+27 c_1{}^2}+\frac {-8+8 i \sqrt {3}}{\sqrt [3]{108 x^2+3 \sqrt {3} \sqrt {(-2 x+c_1){}^2 \left (108 x^2-108 c_1 x-16+27 c_1{}^2\right )}-108 c_1 x-8+27 c_1{}^2}}+16\right ) \\ y(x)\to \frac {\left (2+\sqrt [3]{108 x^2+3 \sqrt {3} \sqrt {(2 x+c_1){}^2 \left (108 x^2+108 c_1 x-16+27 c_1{}^2\right )}+108 c_1 x-8+27 c_1{}^2}\right ){}^2}{6 \sqrt [3]{108 x^2+3 \sqrt {3} \sqrt {(2 x+c_1){}^2 \left (108 x^2+108 c_1 x-16+27 c_1{}^2\right )}+108 c_1 x-8+27 c_1{}^2}} \\ y(x)\to \frac {1}{24} \left (2 i \left (\sqrt {3}+i\right ) \sqrt [3]{108 x^2+3 \sqrt {3} \sqrt {(2 x+c_1){}^2 \left (108 x^2+108 c_1 x-16+27 c_1{}^2\right )}+108 c_1 x-8+27 c_1{}^2}-\frac {8 \left (1+i \sqrt {3}\right )}{\sqrt [3]{108 x^2+3 \sqrt {3} \sqrt {(2 x+c_1){}^2 \left (108 x^2+108 c_1 x-16+27 c_1{}^2\right )}+108 c_1 x-8+27 c_1{}^2}}+16\right ) \\ y(x)\to \frac {1}{24} \left (-2 \left (1+i \sqrt {3}\right ) \sqrt [3]{108 x^2+3 \sqrt {3} \sqrt {(2 x+c_1){}^2 \left (108 x^2+108 c_1 x-16+27 c_1{}^2\right )}+108 c_1 x-8+27 c_1{}^2}+\frac {8 i \left (\sqrt {3}+i\right )}{\sqrt [3]{108 x^2+3 \sqrt {3} \sqrt {(2 x+c_1){}^2 \left (108 x^2+108 c_1 x-16+27 c_1{}^2\right )}+108 c_1 x-8+27 c_1{}^2}}+16\right ) \\ y(x)\to 0 \\ \end{align*}