Internal
problem
ID
[6305]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Section
2.3,
Linear
equations.
Exercises.
page
54
Problem
number
:
12
Date
solved
:
Wednesday, March 05, 2025 at 12:33:29 AM
CAS
classification
:
[[_linear, `class A`]]
ode:=diff(y(x),x) = x^2*exp(-4*x)-4*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==x^2*Exp[-4*x]-4*y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*exp(-4*x) + 4*y(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)