36.2.16 problem 16

Internal problem ID [6309]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 2, First order differential equations. Section 2.3, Linear equations. Exercises. page 54
Problem number : 16
Date solved : Wednesday, March 05, 2025 at 12:33:39 AM
CAS classification : [_linear]

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }-x^{2} y&=\left (1+x \right ) \sqrt {-x^{2}+1} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 52
ode:=(-x^2+1)*diff(y(x),x)-x^2*y(x) = (1+x)*(-x^2+1)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {{\mathrm e}^{-x} \sqrt {x +1}\, c_{1} \sqrt {-x^{2}+1}+\sqrt {x -1}\, x +\sqrt {x -1}}{\sqrt {-x^{2}+1}\, \sqrt {x -1}} \]
Mathematica. Time used: 0.088 (sec). Leaf size: 33
ode=(1-x^2)*D[y[x],x]-x^2*y[x]==(1+x)*Sqrt[1-x^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {e^{-x} \sqrt {x+1} \left (e^x+c_1\right )}{\sqrt {1-x}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*y(x) - sqrt(1 - x**2)*(x + 1) + (1 - x**2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out