Internal
problem
ID
[6400]
Book
:
Basic
Training
in
Mathematics.
By
R.
Shankar.
Plenum
Press.
NY.
1995
Section
:
Chapter
10,
Differential
equations.
Section
10.3,
ODEs
with
variable
Coefficients.
First
order.
page
315
Problem
number
:
10.3.4
Date
solved
:
Wednesday, March 05, 2025 at 12:39:05 AM
CAS
classification
:
[[_linear, `class A`]]
With initial conditions
ode:=diff(y(x),x)+y(x) = (1+x)^2; ic:=y(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]+y[x]==(x+1)^2; ic={y[0]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(x + 1)**2 + y(x) + Derivative(y(x), x),0) ics = {y(0): 0} dsolve(ode,func=y(x),ics=ics)