Internal
problem
ID
[6408]
Book
:
Basic
Training
in
Mathematics.
By
R.
Shankar.
Plenum
Press.
NY.
1995
Section
:
Chapter
10,
Differential
equations.
Section
10.4,
ODEs
with
variable
Coefficients.
Second
order
and
Homogeneous.
page
318
Problem
number
:
10.4.8
(b)
Date
solved
:
Wednesday, March 05, 2025 at 12:39:24 AM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
ode:=x*(1-x)*diff(diff(y(x),x),x)+2*(-2*x+1)*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*(1-x)*D[y[x],{x,2}]+2*(1-2*x)*D[y[x],x]-2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(1 - x)*Derivative(y(x), (x, 2)) + (2 - 4*x)*Derivative(y(x), x) - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False