37.3.2 problem 10.4.8 (b)

Internal problem ID [6408]
Book : Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section : Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients. Second order and Homogeneous. page 318
Problem number : 10.4.8 (b)
Date solved : Wednesday, March 05, 2025 at 12:39:24 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x \left (1-x \right ) y^{\prime \prime }+2 \left (1-2 x \right ) y^{\prime }-2 y&=0 \end{align*}

Maple. Time used: 0.000 (sec). Leaf size: 18
ode:=x*(1-x)*diff(diff(y(x),x),x)+2*(-2*x+1)*diff(y(x),x)-2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 x +c_2}{\left (x -1\right ) x} \]
Mathematica. Time used: 0.037 (sec). Leaf size: 22
ode=x*(1-x)*D[y[x],{x,2}]+2*(1-2*x)*D[y[x],x]-2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_2 x+c_1}{x-x^2} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(1 - x)*Derivative(y(x), (x, 2)) + (2 - 4*x)*Derivative(y(x), x) - 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False