38.1.5 problem 5

Internal problem ID [6422]
Book : Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001
Section : Program 24. First order differential equations. Test excercise 24. page 1067
Problem number : 5
Date solved : Wednesday, March 05, 2025 at 12:39:49 AM
CAS classification : [_quadrature]

\begin{align*} x^{2} y^{\prime }&=x^{3} \sin \left (3 x \right )+4 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 24
ode:=x^2*diff(y(x),x) = x^3*sin(3*x)+4; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\sin \left (3 x \right )}{9}-\frac {x \cos \left (3 x \right )}{3}-\frac {4}{x}+c_1 \]
Mathematica. Time used: 0.035 (sec). Leaf size: 30
ode=x^2*D[y[x],x]==x^3*Sin[3*x]+4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {4}{x}+\frac {1}{9} \sin (3 x)-\frac {1}{3} x \cos (3 x)+c_1 \]
Sympy. Time used: 0.340 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**3*sin(3*x) + x**2*Derivative(y(x), x) - 4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} - \frac {x \cos {\left (3 x \right )}}{3} + \frac {\sin {\left (3 x \right )}}{9} - \frac {4}{x} \]