40.18.1 problem 20

Internal problem ID [6813]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 27. The Legendre, Bessel and Gauss Equations. Supplemetary problems. Page 230
Problem number : 20
Date solved : Monday, January 27, 2025 at 02:31:00 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} z^{\prime \prime }+t z^{\prime }+\left (t^{2}-\frac {1}{9}\right ) z&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 39

Order:=6; 
dsolve(diff(z(t),t$2)+t*diff(z(t),t)+(t^2-1/9)*z(t)=0,z(t),type='series',t=0);
 
\[ z = \left (1+\frac {1}{18} t^{2}-\frac {179}{1944} t^{4}\right ) z \left (0\right )+\left (t -\frac {4}{27} t^{3}-\frac {139}{4860} t^{5}\right ) z^{\prime }\left (0\right )+O\left (t^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 42

AsymptoticDSolveValue[D[z[t],{t,2}]+t*D[z[t],t]+(t^2-1/9)*z[t]==0,z[t],{t,0,"6"-1}]
 
\[ z(t)\to c_2 \left (-\frac {139 t^5}{4860}-\frac {4 t^3}{27}+t\right )+c_1 \left (-\frac {179 t^4}{1944}+\frac {t^2}{18}+1\right ) \]